Article added to library!
x
Pubchase is a service of protocols.io - free, open access, crowdsourced protocols repository. Explore protocols.
Sign in
Reset password
or connect with
Facebook
By signing in you are agreeing to our
Terms Of Service and Privacy Policy
Nov 28, 2014
Molecular Biology And Evolution
We introduce a new method to detect ancient selective sweeps centered on a candidate site. We explored different patterns produced by sweeps around a fixed beneficial mutation, and found that a particularly informative statistic measures the consistency between majority haplotypes near the mutation and genotypic data from a closely related population. We incorporated this statistic into an approximate Bayesian computation (ABC) method that tests for sweeps at a candidate site. We applied this method to simulated data and show that it has some power to detect sweeps that occurred more than 10,000 generations in the past. We also applied it to 1,000 Genomes and Complete Genomics data combined with high-coverage Denisovan and Neanderthal genomes to test for sweeps in modern humans since the separation from the Neanderthal-Denisovan ancestor. We tested sites at which humans are fixed for the derived (i.e., nonchimpanzee allele) whereas the Neanderthal and Denisovan genomes are homozygous for the ancestral allele. We observe only weak differences in statistics indicative of selection between functional categories. When we compare patterns of scaled diversity or use our ABC approach, we fail to find a significant difference in signals of classic selective sweeps between regions surrounding nonsynonymous and synonymous changes, but we detect a slight enrichment for reduced scaled diversity around splice site changes. We also present a list of candidate sites that show high probability of having undergone a classic sweep in the modern human lineage since the split from Neanderthals and Denisovans. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

Downloading PDF to your library...

Uploading PDF...

PDF uploading

Delete tag:

The link you entered does not seem to be valid

Please make sure the link points to nature.com contains a valid shared_access_token