Article added to library!
x
Pubchase is a service of protocols.io - free, open access, crowdsourced protocols repository. Explore protocols.
Sign in
Reset password
or connect with
Facebook
By signing in you are agreeing to our
Terms Of Service and Privacy Policy
Feb 27, 2015
Nature Add nature.com free-link Cancel
Gene transcription in animals involves the assembly of RNA polymerase II at core promoters and its cell-type-specific activation by enhancers that can be located more distally. However, how ubiquitous expression of housekeeping genes is achieved has been less clear. In particular, it is unknown whether ubiquitously active enhancers exist and how developmental and housekeeping gene regulation is separated. An attractive hypothesis is that different core promoters might exhibit an intrinsic specificity to certain enhancers. This is conceivable, as various core promoter sequence elements are differentially distributed between genes of different functions, including elements that are predominantly found at either developmentally regulated or at housekeeping genes. Here we show that thousands of enhancers in Drosophila melanogaster S2 and ovarian somatic cells (OSCs) exhibit a marked specificity to one of two core promoters--one derived from a ubiquitously expressed ribosomal protein gene and another from a developmentally regulated transcription factor--and confirm the existence of these two classes for five additional core promoters from genes with diverse functions. Housekeeping enhancers are active across the two cell types, while developmental enhancers exhibit strong cell-type specificity. Both enhancer classes differ in their genomic distribution, the functions of neighbouring genes, and the core promoter elements of these neighbouring genes. In addition, we identify two transcription factors--Dref and Trl--that bind and activate housekeeping versus developmental enhancers, respectively. Our results provide evidence for a sequence-encoded enhancer-core-promoter specificity that separates developmental and housekeeping gene regulatory programs for thousands of enhancers and their target genes across the entire genome.

Downloading PDF to your library...

Uploading PDF...

PDF uploading

Delete tag:

The link you entered does not seem to be valid

Please make sure the link points to nature.com contains a valid shared_access_token