Article added to library!
Pubchase is a service of - free, open access, crowdsourced protocols repository. Explore protocols.
Sign in
Reset password
or connect with
By signing in you are agreeing to our
Terms Of Service and Privacy Policy
Feb 13, 2017
Nano Letters
UNASSIGNED: Bacterial chromosome has a compact structure that dynamically changes its shape in response to bacterial growth rate and growth phase. Determining how chromatin remains accessible to DNA binding proteins, and transcription machinery is crucial to understand the link between genetic regulation, DNA structure, and topology. Here, we study very large supercoiled dsDNA using high-resolution characterization, theoretical modeling, and molecular dynamics calculations. We unveil a new type of highly ordered DNA organization forming in the presence of attractive DNA-DNA interactions, which we call hyperplectonemes. We demonstrate that their formation depends on DNA size, supercoiling, and bacterial physiology. We compare structural, nanomechanic, and dynamic properties of hyperplectonemes bound by three highly abundant nucleoid-associated proteins (FIS, H-NS, and HU). In all these cases, the negative supercoiling of DNA determines molecular dynamics, modulating their 3D shape. Overall, our findings provide a mechanistic insight into the critical role of DNA topology in genetic regulation.

Downloading PDF to your library...

Uploading PDF...

PDF uploading

Delete tag:

The link you entered does not seem to be valid

Please make sure the link points to contains a valid shared_access_token