Article added to library!
x
Pubchase is a service of protocols.io - free, open access, crowdsourced protocols repository. Explore protocols.
Sign in
Reset password
or connect with
Facebook
By signing in you are agreeing to our
Terms Of Service and Privacy Policy
Structural Biology
Antimicrobial activity of bovine NK-lysin-derived peptides on Mycoplasma bovis.
Jun 01, 2018   PloS One
Dassanayake RP, Falkenberg SM, Register KB, Samorodnitsky D, Nicholson EM, Reinhardt TA
Antimicrobial activity of bovine NK-lysin-derived peptides on Mycoplasma bovis.
Jun 01, 2018
PloS One
Antimicrobial peptides (AMPs) are a diverse group of molecules which play an important role in the innate immune response. Bovine NK-lysins, a type of AMP, have been predominantly found in the granules of cytotoxic T-lymphocytes and NK-cells. Bovine NK-lysin-derived peptides demonstrate antimicrobial activity against various bacterial pathogens, including several involved in bovine respiratory disease complex (BRDC) in cattle; however, such studies are yet to be performed with one important contributor to the BRDC, Mycoplasma bovis. Therefore, the goal of this study was to assess the antimicrobial activity of bovine NK-lysin-derived peptides on M. bovis. Thirty-mer synthetic peptides corresponding to the functional region helices 2 and 3 of bovine NK-lysins NK1, NK2A, NK2B, and NK2C were evaluated for killing activity on M. bovis isolates. Among four peptides, NK2A and NK2C showed the highest antimicrobial activity against the M. bovis isolates tested. All four NK-lysin peptides induced rapid plasma membrane depolarization in M. bovis at two concentrations tested. However, based on propidium iodide uptake, only NK2A and NK2C appeared capable of causing structural damage to M. bovis plasma membrane. Confocal microscopy, flow cytometry, and transmission electron microscopy further suggested NK-lysin-induced damage to the plasma membrane. Taken together, the findings in this study suggest that plasma membrane depolarization alone was insufficient to induce lethality, but disruption/permeabilization of the M. bovis plasma membrane was the cause of lethality.
Nanojunction Effects on Water Flow in Carbon Nanotubes.
May 25, 2018   Scientific Reports
Ebrahimi F, Ramazani F, Sahimi M
Nanojunction Effects on Water Flow in Carbon Nanotubes.
May 25, 2018
Scientific Reports
We report on the results of extensive molecular dynamics simulation of water imbibition in carbon nanotubes (CNTs), connected together by converging or diverging nanojunctions in various configurations. The goal of the study is to understand the effect of the nanojunctions on the interface motion, as well as the differences between what we study and water imbibition in microchannels. While the dynamics of water uptake in the entrance CNT is the same as that of imbibition in straight CNTs, with the main source of energy dissipation being the friction at the entrance, water uptake in the exit CNT is more complex due to significant energy loss in the nanojunctions. We derive an approximate but accurate expression for the pressure drop in the nanojunction. A remarkable difference between dynamic wetting of nano- and microjunctions is that, whereas water absorption time in the latter depends only on the ratios of the radii and of the lengths of the channels, the same is not true about the former, which is shown to be strongly dependent upon the size of each segment of the nanojunction. Interface pinning-depinning also occurs at the convex edges.
Hispidulin alleviates high-glucose-induced podocyte injury by regulating protective autophagy.
Jun 14, 2018   Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie
Wu F, Li S, Zhang N, Huang W, Li X, Wang M, Bai D, Han B
Hispidulin alleviates high-glucose-induced podocyte injury by regulating protective autophagy.
Jun 14, 2018
Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie
OBJECTIVES: Diabetic nephropathy (DN) is one of the most common complications in patients with diabetes, and the discovery of novel targeted therapeutic approaches for DN treatment still faces severe challenges. In the current study, we aimed to discover a novel natural product for potential DN treatment and determine its molecular mechanisms. MATERIALS AND METHODS: Methylthiazoltetrazolium (MTT) assay was employed to evaluate cell viability. Transmission electron microscopy, GFP-LC3 fluorescence fusion plasmid, and Annexin V/PI apoptosis assay were carried out to determine cellular autophagy and apoptosis. Moreover, quantitative proteomics and bioinformatics analysis, Western blotting, and RNA interference were performed to investigate potential molecular mechanisms. RESULTS: Hispidulin displayed protective capacity on the high-glucose-induced podocyte injury models by activating autophagy and inhibiting apoptosis. The mechanism for hispidulin-induced autophagy was associated to Pim1 inhibition and the regulation of Pim1-p21-mTOR signaling axis. Moreover, quantitative proteomics and bioinformatics analysis revealed that the hispidulin-regulated Pim1 inhibition was associated to RAB18, NRas, PARK7, and FIS1. CONCLUSIONS: These results indicate that hispidulin induces autophagy and inhibits apoptosis induced by high glucose in murine podocytes. This study will illuminate future developments in DN-targeted therapy.
Rheological and fracturing characteristics of a novel sulfonated hydroxypropyl guar gum.
Jun 21, 2018   International Journal Of Biological Macromolecules
Qiu L, Shen Y, Wang T, Wang C
Rheological and fracturing characteristics of a novel sulfonated hydroxypropyl guar gum.
Jun 21, 2018
International Journal Of Biological Macromolecules
A series of sulfonated hydroxypropyl guar gum (SHG) samples with different degrees of substitution (DSs) were prepared, and the SHG solution and SHG fracturing fluid were prepared and analyzed. The SHG aqueous solutions with different DSs all exhibit shear thinning behavior, which is well correlated with the Ostwald-deWaele model. Owing to the electrostatic repulsion of SHG molecular chains, SHG solutions with a higher DS will exhibit weaker thixotropic performance and strong anti-salinity ability. In addition, the SHG fracturing fluids, which were formed by interactions between SHG and organic zirconium, exhibit good temperature- and shear-resistant properties, proppant suspension properties, and salt tolerance. Furthermore, SHG gel-breaking fluids show low interfacial and surface tensions, with low residue content and small core permeability damage. These results provide useful indicators for the applications of SHG in the oil field industry.
Ultrastructural Characterization of Corticotropin-Releasing Factor and Neuropeptide Y in the Rat Locus Coeruleus: Anatomical Evidence for Putative Interactions.
Jun 19, 2018   Neuroscience
Theisen CC, Reyes BAS, Sabban EL, Van Bockstaele EJ
Ultrastructural Characterization of Corticotropin-Releasing Factor and Neuropeptide Y in the Rat Locus Coeruleus: Anatomical Evidence for Putative Interactions.
Jun 19, 2018
Neuroscience
As a neurochemical mediator of stress resilience, NPY has been shown to oppose excitatory effects of the pro-stress neuropeptide corticotropin-releasing factor (CRF). Previous studies have described the anatomical organization of NPY and CRF in the central nucleus of the amygdala, which sends CRF projections to the locus coeruleus (LC), activating LC norepinephrine release. However, the cellular substrates for interactions between NPY and CRF in the LC remain unknown. In this study, we investigated these anatomical substrates in the male rat LC, using immunocytochemistry, confocal microscopy, and immunoelectron microscopy to detect NPY and CRF, as well as CRF and Y1 or Y2 receptors (Y1R or Y2R). Immunofluorescence and electron microscopy revealed both co-localization of NPY and CRF in LC axon terminals, as well as separately labeled terminals, suggesting NPY and CRF may serve as co-transmitters in a subset of terminals. Semi-quantitative analysis showed that 32.4% of CRF-labeled terminals contained NPY, while 58.2% (152/261) of NPY-labeled terminals contained CRF. With respect to Y1R and CRF, dual immunoelectron microscopy showed that 23.3% (67/288) of CRF-labeled axon terminals directly contacted Y1R-labeled dendrites, while only 6.3% (18/288) of CRF-labeled axon terminals co-localized with Y1R. Dual immunoelectron microscopy also showed Y2R co-localized with 30.4% (103/339) CRF-labeled terminals, but only with 16.2% (55/339) of dendrites post-synaptic to CRF-labeled axon terminals in the LC. Taken together, these findings indicate multiple sites of interaction between CRF and NPY in the LC and suggest that conditions or drugs that modulate the NPY:CRF balance in the LC may promote stress resilience.
Digital Museum of Retinal Ganglion Cells with Dense Anatomy and Physiology.
May 18, 2018   Cell
Bae JA, Mu S, Kim JS, Turner NL, Tartavull I,   . . . . . .   , Sterling ALR, Park J, Briggman KL, Seung HS, yewirers
Digital Museum of Retinal Ganglion Cells with Dense Anatomy and Physiology.
May 18, 2018
Cell
When 3D electron microscopy and calcium imaging are used to investigate the structure and function of neural circuits, the resulting datasets pose new challenges of visualization and interpretation. Here, we present a new kind of digital resource that encompasses almost 400 ganglion cells from a single patch of mouse retina. An online "museum" provides a 3D interactive view of each cell's anatomy, as well as graphs of its visual responses. The resource reveals two aspects of the retina's inner plexiform layer: an arbor segregation principle governing structure along the light axis and a density conservation principle governing structure in the tangential plane. Structure is related to visual function; ganglion cells with arbors near the layer of ganglion cell somas are more sustained in their visual responses on average. Our methods are potentially applicable to dense maps of neuronal anatomy and physiology in other parts of the nervous system.
Atomic resolution mechanism of ligand binding to a solvent inaccessible cavity in T4 lysozyme.
Jun 18, 2018   PLoS Computational Biology
Mondal J, Ahalawat N, Pandit S, Kay LE, Vallurupalli P
Atomic resolution mechanism of ligand binding to a solvent inaccessible cavity in T4 lysozyme.
Jun 18, 2018
PLoS Computational Biology
Ligand binding sites in proteins are often localized to deeply buried cavities, inaccessible to bulk solvent. Yet, in many cases binding of cognate ligands occurs rapidly. An intriguing system is presented by the L99A cavity mutant of T4 Lysozyme (T4L L99A) that rapidly binds benzene (~106 M-1s-1). Although the protein has long served as a model system for protein thermodynamics and crystal structures of both free and benzene-bound T4L L99A are available, the kinetic pathways by which benzene reaches its solvent-inaccessible binding cavity remain elusive. The current work, using extensive molecular dynamics simulation, achieves this by capturing the complete process of spontaneous recognition of benzene by T4L L99A at atomistic resolution. A series of multi-microsecond unbiased molecular dynamics simulation trajectories unequivocally reveal how benzene, starting in bulk solvent, diffuses to the protein and spontaneously reaches the solvent inaccessible cavity of T4L L99A. The simulated and high-resolution X-ray derived bound structures are in excellent agreement. A robust four-state Markov model, developed using cumulative 60 μs trajectories, identifies and quantifies multiple ligand binding pathways with low activation barriers. Interestingly, none of these identified binding pathways required large conformational changes for ligand access to the buried cavity. Rather, these involve transient but crucial opening of a channel to the cavity via subtle displacements in the positions of key helices (helix4/helix6, helix7/helix9) leading to rapid binding. Free energy simulations further elucidate that these channel-opening events would have been unfavorable in wild type T4L. Taken together and via integrating with results from experiments, these simulations provide unprecedented mechanistic insights into the complete ligand recognition process in a buried cavity. By illustrating the power of subtle helix movements in opening up multiple pathways for ligand access, this work offers an alternate view of ligand recognition in a solvent-inaccessible cavity, contrary to the common perception of a single dominant pathway for ligand binding.
Size-Dependent Grain-Boundary Structure with Improved Conductive and Mechanical Stabilities in Sub-10-nm Gold Crystals.
May 21, 2018   Physical Review Letters
Wang C, Du K, Song K, Ye X, Qi L, He S, Tang D, Lu N, Jin H, Li F, Ye H
Size-Dependent Grain-Boundary Structure with Improved Conductive and Mechanical Stabilities in Sub-10-nm Gold Crystals.
May 21, 2018
Physical Review Letters
Low-angle grain boundaries generally exist in the form of dislocation arrays, while high-angle grain boundaries (misorientation angle >15°) exist in the form of structural units in bulk metals. Here, through in situ atomic resolution aberration corrected electron microscopy observations, we report size-dependent grain-boundary structures improving both stabilities of electrical conductivity and mechanical properties in sub-10-nm-sized gold crystals. With the diameter of a nanocrystal decreasing below 10 nm, the high-angle grain boundary in the crystal exists as an array of dislocations. This size effect may be of importance to a new generation of interconnects applications.
Force Field for Water Based on Neural Network.
Jun 21, 2018   The Journal Of Physical Chemistry Letters
Wang H, Yang W
Force Field for Water Based on Neural Network.
Jun 21, 2018
The Journal Of Physical Chemistry Letters
We developed a novel neural network-based force field for water based on training with high-level ab initio theory. The force field was built based on an electrostatically embedded many-body expansion method truncated at binary interactions. The many-body expansion method is a common strategy to partition the total Hamiltonian of large systems into a hierarchy of few-body terms. Neural networks were trained to represent electrostatically embedded one-body and two-body interactions, which require as input only one and two water molecule calculations at the level of ab initio electronic structure method CCSD/aug-cc-pVDZ embedded in the molecular mechanics water environment, making it efficient as a general force field construction approach. Structural and dynamic properties of liquid water calculated with our force field show good agreement with experimental results. We constructed two sets of neural network based force fields: nonpolarizable and polarizable force fields. Simulation results show that the nonpolarizable force field using fixed TIP3P charges has already behaved well, since polarization effects and many-body effects are implicitly included due to the electrostatic embedding scheme. Our results demonstrate that the electrostatically embedded many-body expansion combined with neural network provides a promising and systematic way to build next-generation force fields at high accuracy and low computational costs, especially for large systems.
3D DNA Origami Crystals.
May 18, 2018   Advanced Materials (Deerfield Beach, Fla.)
Zhang T, Hartl C, Frank K, Heuer-Jungemann A, Fischer S, Nickels PC, Nickel B, Liedl T
3D DNA Origami Crystals.
May 18, 2018
Advanced Materials (Deerfield Beach, Fla.)
3D crystals assembled entirely from DNA provide a route to design materials on a molecular level and to arrange guest particles in predefined lattices. This requires design schemes that provide high rigidity and sufficiently large open guest space. A DNA-origami-based "tensegrity triangle" structure that assembles into a 3D rhombohedral crystalline lattice with an open structure in which 90% of the volume is empty space is presented here. Site-specific placement of gold nanoparticles within the lattice demonstrates that these crystals are spacious enough to efficiently host 20 nm particles in a cavity size of 1.83 × 105 nm3 , which would also suffice to accommodate ribosome-sized macromolecules. The accurate assembly of the DNA origami lattice itself, as well as the precise incorporation of gold particles, is validated by electron microscopy and small-angle X-ray scattering experiments. The results show that it is possible to create DNA building blocks that assemble into lattices with customized geometry. Site-specific hosting of nano objects in the optically transparent DNA lattice sets the stage for metamaterial and structural biology applications.
Matrix-glycoprotein interactions required for budding of a plant nucleorhabdovirus and induction of inner nuclear membrane invagination.
May 18, 2018   Molecular Plant Pathology
Sun K, Zhou X, Lin W, Zhou X, Jackson AO, Li Z
Matrix-glycoprotein interactions required for budding of a plant nucleorhabdovirus and induction of inner nuclear membrane invagination.
May 18, 2018
Molecular Plant Pathology
Nucleorhabdoviruses such as Sonchus yellow net virus (SYNV) replicate in the nuclei and undergo morphogenesis at the inner nuclear membrane (IM) in plant cells. Mature particles are presumed to form by budding of the Matrix (M) protein-nucleocapsid complexes through host IMs to acquire host phospholipids and the surface glycoproteins (G). To address mechanisms underlying nucleorhabdovirus budding, we generated recombinant SYNV G mutants containing a truncated amino-terminal (NT) or carboxyl-terminal (CT) domain. Electron microscopy and sucrose gradient centrifugation analyses showed that the CT domain is essential for virion morphogenesis whereas the NT domain is also required for efficient budding. SYNV infection induces IM invaginations that are thought to provide membrane sites for virus budding. We found that in the context of viral infections, interactions of the M protein with the CT domain of the membrane-anchored G protein mediate M protein translocation and IM invagination. Interestingly, tethering the M protein to endomembranes, either by co-expression with a transmembrane G protein CT domain or by artificial fusion with the G protein membrane targeting sequence, induces IM invagination in uninfected cells. Further evidence to support functions of G-M interactions in virus budding came from dominant negative effects on SYNV-induced IM invagination and viral infections that were elicited by expression of a soluble version of the G protein CT domain. Based on these data, we propose that cooperative G-M interactions promote efficient SYNV budding. This article is protected by copyright. All rights reserved.
Targeting intracellular MMPs efficiently inhibits tumor metastasis and angiogenesis.
May 20, 2018   Theranostics
Lv Y, Zhao X, Zhu L, Li S, Xiao Q, He W, Yin L
Targeting intracellular MMPs efficiently inhibits tumor metastasis and angiogenesis.
May 20, 2018
Theranostics
Treatment for metastatic cancer is a great challenge throughout the world. Commonly, directed inhibition of extracellular matrix metalloproteinases (MMPs) secreted by cancer cells can reduce metastasis. Here, a novel nanoplatform (HPMC NPs) assembled from hyaluronic acid (HA)-paclitaxel (PTX) prodrug and marimastat (MATT)/β-casein (CN) complexes was established to cure a 4T1 metastatic cancer model via targeting CD44 and intracellular, rather than extracellular, MMPs. Methods: HPMC NPs were prepared by assembling the complexes and prodrug under ultrasonic treatment, which the interaction between them was evaluated by förster resonance energy transfer, circular dichroism and fluorescence spectra. The developed nanoplatform was characterized via dynamic light scattering and transmission electron microscopy, and was evaluated in terms of MMP-sensitive release and stability. Subsequently, the cellular uptake, trafficking, and in vitro invasion were studied by flow cytometry, confocal laser microscopy and transwell assay. MMP expression and activity was determined by western blotting and gelatin zymography. Finally, the studies of biodistribution and antitumor efficacy in vivo were performed in a mouse 4T1 tumor breast model, followed by in vivo safety study in normal mouse. Results: The interaction between the prodrug and complexes is strong with a high affinity, resulting in the assembly of these two components into hybrid nanoparticles (250 nm). Compared with extracellular incubation with MATT, HPMC NP treatment markedly reduced the expression (100%) and activity (50%) of MMPs in 4T1 cells and in the tumor. HPMC NPs exhibited 1.4-fold tumor accumulation, inhibited tumor-growth by >8-fold in volume with efficient apoptosis and proliferation, and suppressed metastasis (>5-fold) and angiogenesis (>3-fold). Overall, HPMC NPs were efficient in metastatic cancer therapy. Conclusions: According to the assembly of polymer prodrug and protein-drug complexes, this study offers a new strategy for constructing nanoparticles for targeted drug delivery, biomedical imaging, and combinatorial treatment. Importantly, via inhibition of intracellular MMPs, metastasis and angiogenesis can be potently blocked, benefiting the rational design of nanomedicine for cancer treatment.
The trimeric solution structure and fucose-binding mechanism of the core fucosylation-specific lectin PhoSL.
May 25, 2018   Scientific Reports
Yamasaki K, Yamasaki T, Tateno H
The trimeric solution structure and fucose-binding mechanism of the core fucosylation-specific lectin PhoSL.
May 25, 2018
Scientific Reports
The core α1-6 fucosylation-specific lectin from a mushroom Pholiota squarrosa (PhoSL) is a potential tool for precise diagnosis of cancers. This lectin consists of only 40 amino acids and can be chemically synthesized. We showed here that a synthesized PhoSL peptide formed a trimer by gel filtration and chemical cross-linking assays, and determined a structure of the PhoSL trimer by NMR. The structure possesses a β-prism motif with a three-fold rotational symmetry, where three antiparallel β-sheets are tightly connected by swapping of β-strands. A triad of Trp residues comprises the structural core, forming NH-π electrostatic interactions among the indole rings. NMR analysis with an excess amount of fucose revealed the structural basis for the molecular recognition. Namely, fucose deeply enters a pocket formed at a junction of β-sheet edges, with the methyl group placed at the bottom. It forms a number of hydrophobic and hydrogen-bonding interactions with PhoSL residues. In spite of partial similarities to the structures of other functionally related lectins, the arrangement of the antiparallel β-sheets in the PhoSL trimer is novel as a structural scaffold, and thus defines a novel type of lectin structure.
Signatures of diversifying selection and convergence acting on passerine Toll-like receptor 4 in an evolutionary context.
Jun 07, 2018   Molecular Ecology
Králová T, Albrecht T, Bryja J, Hořák D, Johnsen A, Lifjeld JT, Novotný M, Sedláček O, Velová H, Vinkler M
Signatures of diversifying selection and convergence acting on passerine Toll-like receptor 4 in an evolutionary context.
Jun 07, 2018
Molecular Ecology
Positive selection acting on Toll-like receptors (TLRs) has been recently investigated to reveal evolutionary mechanisms of host-pathogen molecular co-adaptation. Much of this research, however, has focused mainly on the identification of sites predicted to be under positive selection, bringing little insight into the functional differences and similarities among species and a limited understanding of convergent evolution in the innate immune molecules. In this study, we provide evidence of phenotypic variability in the avian TLR4 ligand-binding region (LBR), the direct interface between host and pathogen molecular structures. We show that 55 passerine species vary substantially in the distribution of electrostatic potential on the surface of the receptor, and based on these distinct patterns, we identified four species clusters. Seven of the 34 evolutionarily nonconservative and positively selected residues correspond topologically to sites previously identified as being important for lipopolysaccharide, lipid IVa or MD-2 binding. Five of these positions codetermine the identity of the charge clusters. Groups of species that host-related communities of pathogens were predicted to cluster based on their TLR4 LBR charge. Despite some evidence for convergence among taxa, there were no clear associations between the TLR4 LBR charge distribution and any of the general ecological characteristics compared (migration, latitudinal distribution and diet). Closely related species, however, mostly belonged to the same surface charge cluster indicating that phylogenetic constraints are key determinants shaping TLR4 adaptive evolution. Our results suggest that host innate immune evolution is consistent with Fahrenholz's rule on the cospeciation of hosts and their parasites.
Revealing isoelectronic size conversion dynamics of metal nanoclusters by a noncrystallization approach.
May 22, 2018   Nature Communications
Yao Q, Fung V, Sun C, Huang S, Chen T, Jiang DE, Lee JY, Xie J
Revealing isoelectronic size conversion dynamics of metal nanoclusters by a noncrystallization approach.
May 22, 2018
Nature Communications
Atom-by-atom engineering of nanomaterials requires atomic-level knowledge of the size evolution mechanism of nanoparticles, which remains one of the greatest mysteries in nanochemistry. Here we reveal atomic-level dynamics of size evolution reaction of molecular-like nanoparticles, i.e., nanoclusters (NCs) by delicate mass spectrometry (MS) analyses. The model size-conversion reaction is [Au23(SR)16]- → [Au25(SR)18]- (SR = thiolate ligand). We demonstrate that such isoelectronic (valence electron count is 8 in both NCs) size-conversion occurs by a surface-motif-exchange-induced symmetry-breaking core structure transformation mechanism, surfacing as a definitive reaction of [Au23(SR)16]- + 2 [Au2(SR)3]- → [Au25(SR)18]- + 2 [Au(SR)2]-. The detailed tandem MS analyses further suggest the bond susceptibility hierarchies in feed and final Au NCs, shedding mechanistic light on cluster reaction dynamics at atomic level. The MS-based mechanistic approach developed in this study also opens a complementary avenue to X-ray crystallography to reveal size evolution kinetics and dynamics.
Water structure changes in oxime-mediated reactivation process of phosphorylated human acetylcholinesterase.
May 18, 2018   Bioscience Reports
Zueva IV, Lushchekina SV, Masson P
Water structure changes in oxime-mediated reactivation process of phosphorylated human acetylcholinesterase.
May 18, 2018
Bioscience Reports
The role of water in oxime-mediated reactivation of phosphylated cholinesterases has been asked with recurrence. To investigate oximate water structure changes in this reaction, reactivation of paraoxon-inhibited human acetylcholinesterase (AChE) was performed by the oxime HI-6 at different pH in the presence and absence of lyotropic salts: a neutral salt (NaCl), a strong chaotropic salt (LiSCN) and strong kosmotropic salts (ammonium sulfate and phosphate HPO42-). At the same time, molecular dynamic simulations of enzyme reactivation under the same conditions were performed over 100 ns. Reactivation kinetics showed that low concentration of chaotropic salt up to 75 mM increase the percentage of reactivation of diethylphosphorylated AChE whereas kosmotropic salts lead only to a small decrease in reactivation. This indicates that water-breaker salt induces destructuration of water molecules that are electrostricted around oximate ions. Desolvation of oximate favors nucleophilic attack on the phosphorus atom. Effects observed at high salt concentrations (>100 mM) result either from salting-out of the enzyme by kosmotropic salts (phosphate and ammonium sulfate) or denaturing action of chaotropic LiSCN. Molecular dynamics simulations of diethylphosphorylated hAChE complex with HI-6 over 100 ns were performed in the presence of 100 mM (NH4)2SO4and 50 mM LiSCN. In the presence of LiSCN, it was found that protein and water have a higher mobility, i.e. water is less organized, compared to the ammonium sulfate system. LiSCN favors protein solvation (hydrophobic hydration) and breakage of elelectrostricted water molecules around of oximate-ion. As a result more free water molecules participate to reaction steps accompanying oxime-mediated dephosphorylation.
Measuring zinc in biological nanovesicles by multiple analytical approaches.
May 18, 2018   Journal Of Trace Elements In Medicine And Biology : Organ Of The Society For Minerals And Trace Elements (GMS)
Piacenza F, Biesemeier A, Farina M, Piva F, Jin X,   . . . . . .   , Provinciali M, Hwang JCM, Morini A, di Donato A, Malavolta M
Measuring zinc in biological nanovesicles by multiple analytical approaches.
May 18, 2018
Journal Of Trace Elements In Medicine And Biology : Organ Of The Society For Minerals And Trace Elements (GMS)
Exosomes are nanovesicles known to mediate intercellular communication. Although it is established that zinc ions can act as intracellular signaling factors, the measurement of zinc in circulating nanovesicles has not yet been attempted. Providing evidence of the existence of this zinc fraction and methods for its measurement might be important to advance our knowledge of zinc status and its relevance in diseases. Exosomes from 0.5 ml of either fresh or frozen human plasma were isolated by differential centrifugation. A morphological and dimensional evaluation at the nanoscale level was performed by atomic force microscopy (AFM) and Transmission Electron Microscopy (TEM). Energy Dispersive X-Ray Microanalysis (EDX) revealed the elemental composition of exosomes and their respective total Zinc content on a quantitative basis. The zinc mole fraction (in at%) was correlated to the phosphorous mole fraction, which is indicative for exosomal membrane material. Both fresh (Zn/P 0.09 ± 0.01) and frozen exosomes (Zn/P 0.08 ± 0.02) had a significant zinc content, which increased up to 1.09 ± 0.12 for frozen exosomes when treated with increasing amounts of zinc (100-500 μM; each p 
Biomimetic Superhydrophobic Hollowed-Out Pyramid Surface Based on Self-Assembly.
Jun 01, 2018   Materials (Basel, Switzerland)
Luo W, Yu B, Xiao D, Zhang M, Wu X, Li G
Biomimetic Superhydrophobic Hollowed-Out Pyramid Surface Based on Self-Assembly.
Jun 01, 2018
Materials (Basel, Switzerland)
In this paper, we present a periodic hollowed-out pyramid microstructure with excellent superhydrophobicity. In our approach, T-topping pillars and capillary-induced self-assembly methods were combined with the photolithography process to fabricate a hollowed-out pyramid structure. First, a wideband ultraviolet source without a filter was used to fabricate the T-topping pillars during the exposure process; then, the evaporation-induced assembly collapsed the pillars and formed the hollowed-out pyramid structure. Scanning electron microscopy images showed the microstructures of the prepared surface. The contact angle of the surface was 154°. The surface showed excellent high temperature and ultraviolet irradiation tolerance, and the contact angle of the surface barely changed when the temperature dropped. This excellent environmental durability of our superhydrophobic surface has potential applications for self-cleaning and friction drag reduction under water.
Microstructure Evolution and Mechanical Behavior of 2219 Aluminum Alloys Additively Fabricated by the Cold Metal Transfer Process.
Jun 01, 2018   Materials (Basel, Switzerland)
Fang X, Zhang L, Li H, Li C, Huang K, Lu B
Microstructure Evolution and Mechanical Behavior of 2219 Aluminum Alloys Additively Fabricated by the Cold Metal Transfer Process.
Jun 01, 2018
Materials (Basel, Switzerland)
In this research, four different welding arc modes including conventional cold metal transfer (CMT), CMT-Pulse (CMT-P), CMT-Advanced (CMT-ADV), and CMT pulse advanced (CMT-PADV) were used to deposit 2219-Al wire. The effects of different arc modes on porosity, pore size distribution, microstructure evolution, and mechanical properties were thoroughly investigated. The statistical analysis of the porosity and its size distribution indicated that the CMT-PADV process gave the smallest pore area percentage and pore aspect ratio, and had almost no larger pores. The results from optical microscopy, scanning electron microscopy, and fractographic morphology proved that uniform and fine equiaxed grains, evenly distributed Al₂Cu second phase particles were formed during the CMT-PADV process. Furthermore, the X-ray diffraction test ascertained that the CMT-PADV sample had the smallest lattice parameter and the highest solute Cu content. Besides, the tensile strength could reach 283 MPa, the data scattering was the smallest, and the strength scattering of the sample in the horizontal direction was the shortest. In addition, the strength properties were nearly isotropic, with only 5 MPa difference in the vertical and horizontal directions. The above mentioned results indicated that the mechanical properties of 2219 aluminum alloy was improved using the CMT-PADV arc mode.
Facile Synthesis of Magnetic Photocatalyst Ag/BiVO₄/Mn1-xZnxFe₂O₄ and Its Highly Visible-Light-Driven Photocatalytic Activity.
Jun 01, 2018   Materials (Basel, Switzerland)
Xie T, Li H, Liu C, Xu L
Facile Synthesis of Magnetic Photocatalyst Ag/BiVO₄/Mn1-xZnxFe₂O₄ and Its Highly Visible-Light-Driven Photocatalytic Activity.
Jun 01, 2018
Materials (Basel, Switzerland)
Ag/BiVO₄/Mn1-xZnxFe₂O₄ was synthesized with a dip-calcination in situ synthesis method. This work was hoped to provide a simple method to synthesis three-phase composite. The phase structure, optical properties and magnetic feature were confirmed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectrometer (XPS), transmission electron microscopy (TEM), ultraviolet-visible diffuse reflectance spectrophotometer (UV-vis DRS), and vibrating sample magnetometer (VSM). The photocatalytic activity was investigated by Rhodamine B (RhB) photo-degradation under visible light irradiation. The photo-degradation rate of RhB was 94.0~96.0% after only 60 min photocatalytic reaction under visible light irradiation, revealing that it had an excellent visible-light-induced photocatalytic activity. In the fifth recycle, the degradation rate of Ag/BiVO₄/Mn1-xZnxFe₂O₄ still reached to 94.0%. Free radical tunnel experiments confirmed the dominant role of •O₂- in the photocatalytic process for Ag/BiVO₄/Mn1-xZnxFe₂O₄. Most importantly, the mechanism that multifunction Ag could enhance photocatalytic activity was explained in detail.
Fabrication and Characterization of Nanoenergetic Hollow Spherical Hexanitrostibene (HNS) Derivatives.
Jun 06, 2018   Nanomaterials (Basel, Switzerland)
Cao X, Deng P, Hu S, Ren L, Li X, Xiao P, Liu Y
Fabrication and Characterization of Nanoenergetic Hollow Spherical Hexanitrostibene (HNS) Derivatives.
Jun 06, 2018
Nanomaterials (Basel, Switzerland)
The spherization of nanoenergetic materials is the best way to improve the sensitivity and increase loading densities and detonation properties for weapons and ammunition, but the preparation of spherical nanoenergetic materials with high regularization, uniform size and monodispersity is still a challenge. In this paper, nanoenergetic hollow spherical hexanitrostibene (HNS) derivatives were fabricated via a one-pot copolymerization strategy, which is based on the reaction of HNS and piperazine in acetonitrile solution. Characterization results indicated the as-prepared reaction nanoenergetic products were HNS-derived oligomers, where a free radical copolymerization reaction process was inferred. The hollow sphere structure of the HNS derivatives was characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM), and synchrotron radiation X-ray imaging technology. The properties of the nanoenergetic hollow spherical derivatives, including thermal decomposition and sensitivity are discussed in detail. Sensitivity studies showed that the nanoenergetic derivatives exhibited lower impact, friction and spark sensitivity than raw HNS. Thermogravimetric-differential scanning calorimeter (TG-DSC) results showed that continuous exothermic decomposition occurred in the whole temperature range, which indicated that nanoenergetic derivatives have a unique role in thermal applications. Therefore, nanoenergetic hollow spherical HNS derivatives could provide a new way to modify the properties of certain energetic compounds and fabricate spherical nanomaterials to improve the charge configuration.
Microstructure Evolution of AlSi10Mg(Cu) Alloy Related to Isothermal Exposure.
Jun 01, 2018   Materials (Basel, Switzerland)
Cai C, Geng H, Wang S, Gong B, Zhang Z
Microstructure Evolution of AlSi10Mg(Cu) Alloy Related to Isothermal Exposure.
Jun 01, 2018
Materials (Basel, Switzerland)
The mechanical properties and corrosion resistance changes of AlSi10Mg(Cu) alloy under different isothermal exposure conditions have been investigated by tensile experiments and electrochemical testing. The results show that isothermal exposure has a significant influence on the mechanical properties and corrosion resistance. Tensile strength is more sensitive to the higher exposure temperature, while the corrosion resistance is greater affected by the lower exposure temperature and shorter time. Microstructure evolution of AlSi10Mg(Cu) alloy related to different isothermal exposure condition has also been studied by using transmission electron microscopy (TEM). The results indicate that the isothermal exposure changed the type and density of nanoscale precipitates in the alloy, which in turn induced the change of performance of the alloy.
Enhanced hexavalent chromium removal performance and stabilization by magnetic iron nanoparticles assisted biochar in aqueous solution: Mechanisms and application potential.
Jun 12, 2018   Chemosphere
Zhu S, Huang X, Wang D, Wang L, Ma F
Enhanced hexavalent chromium removal performance and stabilization by magnetic iron nanoparticles assisted biochar in aqueous solution: Mechanisms and application potential.
Jun 12, 2018
Chemosphere
The superiority of the nanoscale zero valent iron (nZVI) assisted biochar (BC) composites compared to traditional nZVI and its application feasibility are still unclear. This study aimed to provide valuable information for practical application. Firstly, the Fe/BC mass ratio of 2:1 during the preparation of nZVI-BC was proved obtaining the complete Cr6+ removal. Then, results revealed that the initial pH value tuned Cr6+ removal performance via varying existing Cr6+ species, surface charge, and chemical states of iron nanoparticles (NPs). Improvement of colloidal stabilization and positive surface charge attributed to enhancement of Cr6+ removal of nZVI-BC. The Cr6+ removal process was well described using pseudo-second-order kinetic. By Langmuir isotherm model, the maximum removal capacity (58.82 mg g-1) was determined. Moreover, the multiple evidences (XRD, XPS, FTIR, and TEM results) explained the mechanisms of Cr6+ removal (i.e. electrostatic force, complexes, metal reduction, and precipitates on the edges). Little inhibitory effect of coexisting anions (SO42-, PO43-, and NO3-) and well regeneration ability (82.2% removal efficiency after five cycles using acid washing), along with well Cr6+ removal efficiencies of real contaminated water (electroplating wastewater, tannery wastewater and groundwater) treatment, suggested nZVI-BC was considered as a superior and cost-effective choice for Cr6+ included polluted water treatment.
Estrogenic properties of coumarins and meroterpene from the fruits of Cullen corylifolium: Experimental and computational studies.
Jun 15, 2018   Phytochemistry
Zhang T, Zhong S, Hou L, Li T, Xing X, Guan T, Zhang J, Wang Y
Estrogenic properties of coumarins and meroterpene from the fruits of Cullen corylifolium: Experimental and computational studies.
Jun 15, 2018
Phytochemistry
Coumarins and meroterpene from the fruits of Cullen corylifolium were evaluated for their ability to bind and activate human estrogen receptor α (hERα) by a combination of in vitro studies and molecular dynamics simulations. The recombinant hERα ligand binding domain (hERα-LBD) was produced in BL21 (DE3)pLysS and the fluorescence polarization (FP) assay was performed to determine the binding affinities of coumarins and meroterpene with receptor protein. These compounds displayed distinct binding potency toward hERα-LBD, generally increased with their increasing molecular length and Connolly solvent-excluded volume (CSEV). In an estrogen response element-luciferase (ERE-Luc) reporter gene assay, coumarins and meroterpene acted as agonists of human estrogen receptor α. Subsequently, molecular docking was conducted to elucidate the molecular mechanism behind their agonistic activities. Coumarins and meroterpene adopted an agonist conformation within the cavity of hERα-LBD. The hydrophobic and hydrogen-bonding interactions were dominant forces to stabilize their binding. The structure-activity relationship analysis suggested that the presence of hydroxyl groups and prenyl group were crucial for possessing estrogenic activities. Comparison of the calculated binding energies with the determined binding affinities yielded a good correlation (R2 = 0.9727). In conclusion, molecular modeling techniques can potentially be applied for in silico screening of selective estrogen receptor modulators (SERMs) from undescribed compounds.
From hit to lead: Structure-based discovery of naphthalene-1-sulfonamide derivatives as potent and selective inhibitors of fatty acid binding protein 4.
Jun 08, 2018   European Journal Of Medicinal Chemistry
Gao DD, Dou HX, Su HX, Zhang MM, Wang T, Liu QF, Cai HY, Ding HP, Yang Z, Zhu WL, Xu YC, Wang HY, Li YX
From hit to lead: Structure-based discovery of naphthalene-1-sulfonamide derivatives as potent and selective inhibitors of fatty acid binding protein 4.
Jun 08, 2018
European Journal Of Medicinal Chemistry
Fatty acid binding protein 4 (FABP4) plays a critical role in metabolism and inflammatory processes and therefore is a potential therapeutic target for immunometabolic diseases such as diabetes and atherosclerosis. Herein, we reported the identification of naphthalene-1-sulfonamide derivatives as novel, potent and selective FABP4 inhibitors by applying a structure-based design strategy. The binding affinities of compounds 16dk, 16do and 16du to FABP4, at the molecular level, are equivalent to or even better than that of BMS309403. The X-ray crystallography complemented by the isothermal titration calorimetry studies revealed the binding mode of this series of inhibitors and the pivotal network of ordered water molecules in the binding pocket of FABP4. Moreover, compounds 16dk and 16do showed good metabolic stabilities in liver microsomes. Further extensive in vivo study demonstrated that 16dk and 16do exhibited a dramatic improvement in glucose and lipid metabolism, by decreasing fasting blood glucose and serum lipid levels, enhancing insulin sensitivity, and ameliorating hepatic steatosis in obese diabetic (db/db) mice.

The link you entered does not seem to be valid

Please make sure the link points to nature.com contains a valid shared_access_token

Downloading PDF to your library...

Uploading PDF...

PDF uploading

Delete tag: