Article added to library!
x
Pubchase is a service of protocols.io - free, open access, crowdsourced protocols repository. Explore protocols.
Sign in
Reset password
or connect with
Facebook
By signing in you are agreeing to our
Terms Of Service and Privacy Policy
Jan 17, 2014
Astrobiology
Terrestrial organisms or other contaminants that are transported to Mars could interfere with efforts to study the potential for indigenous martian life. Similarly, contaminants that make the round-trip to Mars and back to Earth could compromise the ability to discriminate an authentic martian biosignature from a terrestrial organism. For this reason, it is important to develop a comprehensive inventory of microbes that are present on spacecraft to avoid interpreting their traces as authentic extraterrestrial biosignatures. Culture-based methods are currently used by NASA to assess spacecraft cleanliness but deliberately detect only a very small subset of total organisms present. The National Research Council has recommended that molecular (DNA)-based identification techniques should be developed as one aspect of managing the risk that terrestrial contamination could interfere with detection of life on (or returned from) Mars. The current understanding of the microbial diversity associated with spacecraft and clean room surfaces is expanding, but the capability to generate a comprehensive inventory of the microbial populations present on spacecraft outbound from Earth would address multiple considerations in planetary protection, relevant to both robotic and human missions. To this end, a 6-year genetic inventory study was undertaken by a NASA/JPL team. It was completed in 2012 and included delivery of a publicly available comprehensive final report. The genetic inventory study team evaluated the utility of three analytical technologies (conventional cloning techniques, PhyloChip DNA microarrays, and 454 tag-pyrosequencing) and combined them with a systematic methodology to collect, process, and archive nucleic acids as the first steps in assessing the phylogenetic breadth of microorganisms on spacecraft and associated surfaces.

Downloading PDF to your library...

Uploading PDF...

PDF uploading

Delete tag:

The link you entered does not seem to be valid

Please make sure the link points to nature.com contains a valid shared_access_token