Article added to library!
x
Pubchase is a service of protocols.io - free, open access, crowdsourced protocols repository. Explore protocols.
Sign in
Reset password
or connect with
Facebook
By signing in you are agreeing to our
Terms Of Service and Privacy Policy
  • See more
  • '); var ntfc_preview = ''; $.post('/api/v1/get_notifications', function(r) { var ntfc_read_pending = 0; var ntfc_pending = 0; $.each(r.notifications.pending, function(index, ntfc_object) { ntfc_read_pending++; ntfc_pending++; if (ntfc_read_pending
    ' + ntfc_object.full_name +'' + ntfc_object.time + '
    ' + ntfc_object.description +'
    '; }) if (ntfc_read_pending
    ' + ntfc_object.full_name +'' + ntfc_object.time + '
    ' + ntfc_object.description +'
    '; }) $('.notification-block .dropdown-menu').html(ntfc_preview); $('.notification-block .dropdown-menu').append('
  • See more
  • '); if (ntfc_pending > 0) { $('.notification-count').text(ntfc_pending).show(); } else { $('.notification-count').hide(); } } else { $('.notification-block .dropdown-menu').html(ntfc_preview); $('.notification-block .dropdown-menu').append('
  • See more
  • '); if (ntfc_pending > 0) { $('.notification-count').text(ntfc_pending).show(); } else { $('.notification-count').hide(); } } if (ntfc_read_pending == 0) { $('.notification-block .dropdown-menu').html('
  • You don\'t have any notifications
  • See more
  • '); $('.notification-count').hide(); } data = {'nid' : '', 'ntid' : 1}; $.post('/api/v1/notification_action', data, function(r) { if (r.request == 'OK') { $('.notification-count').hide(); } }); }, "json"); }); $('.search-save-box').on({ click : function(e) { e.preventDefault(); var search_attr = $(this).attr('rel').split(','); var p = search_attr[1]; var tf = search_attr[0]; window.location = '/search?tf='+tf+'&jc='+jc+'&keywords='+$(this).html()+'&s='+$('#sort_order').val()+'&p='+p; } }, '.search-name'); $( "#keywords_main, #keywords_mobile" ).focus(function(e) { show_saved_searches(e, $(this)); }); $(window).resize(function () { if ($('.search-save-box').is(':visible')) { if ($('#keywords_main').is(':visible')) var left_search_save = $('#keywords_main').offset().left; if ($('#keywords_mobile').is(':visible')) var left_search_save = $('#keywords_mobile').offset().left; $('.search-save-box').css('left',left_search_save); } }); $('.search-save-box').on({ click : function(e) { e.preventDefault(); delete_saved_search($(this)); } }, '.search-name-close'); $('.search-save-box, #keywords_main, #keywords_mobile').click(function(e) { e.stopPropagation(); }); $(document).click(function(e) { $('.search-save-box').hide(); }); $( "#keywords_main, #keywords_mobile" ).autocomplete({ source: function( request, response ) { // data contains the JSON object textStatus contains the status: success, error, etc $.post('/api/v1/searches', {'key' : request.term}, function(data, textStatus) { response(data); }, "json") }, select: function (event, ui) { var reportname = ui.item.value; var thelinks = '/search?tf='+$('#time_frame').val()+'&jc='+jc+'&keywords='+reportname+'&s='+$('#sort_order').val()+'&p='+$('#people_cluster').val(); } }); $('.search-go').click(function(e) { e.preventDefault(); window.location = get_search_url(); }); $('.logout').click(function(e) { e.preventDefault(); }); $('.header_keywords, .home_page_keywords').on('keydown', function(e) { if (e.keyCode == 13) { window.location = get_search_url(); } $('.search-save-box').hide(); }); $('.seemore').click(function(e){ e.stopImmediatePropagation(); }); });
    Sep 09, 2015
    PloS One
    The belief propagation (BP) algorithm has some limitations, including ambiguous edges and textureless regions, and slow convergence speed. To address these problems, we present a novel algorithm that intrinsically improves both the accuracy and the convergence speed of BP. First, traditional BP generally consumes time due to numerous iterations. To reduce the number of iterations, inspired by the crucial importance of the initial value in nonlinear problems, a novel initial-value belief propagation (IVBP) algorithm is presented, which can greatly improve both convergence speed and accuracy. Second, .the majority of the existing research on BP concentrates on the smoothness term or other energy terms, neglecting the significance of the data term. In this study, a self-adapting dissimilarity data term (SDDT) is presented to improve the accuracy of the data term, which incorporates an additional gradient-based measure into the traditional data term, with the weight determined by the robust measure-based control function. Finally, this study explores the effective combination of local methods and global methods. The experimental results have demonstrated that our method performs well compared with the state-of-the-art BP and simultaneously holds better edge-preserving smoothing effects with fast convergence speed in the Middlebury and new 2014 Middlebury datasets.
      
    Add Public PDF
      
      
    Upload my PDF
      

    Downloading PDF to your library...

    ADD A TAG      64 chars max

      Make private

    APPLIED TAGS

    Uploading PDF...

    PDF uploading

    Delete tag:

    The link you entered does not seem to be valid

    Please make sure the link points to nature.com contains a valid shared_access_token