Article added to library!
x
Pubchase is a service of protocols.io - free, open access, crowdsourced protocols repository. Explore protocols.
Sign in
Reset password
or connect with
Facebook
By signing in you are agreeing to our
Terms Of Service and Privacy Policy
  • See more
  • '); var ntfc_preview = ''; $.post('/api/v1/get_notifications', function(r) { var ntfc_read_pending = 0; var ntfc_pending = 0; $.each(r.notifications.pending, function(index, ntfc_object) { ntfc_read_pending++; ntfc_pending++; if (ntfc_read_pending
    ' + ntfc_object.full_name +'' + ntfc_object.time + '
    ' + ntfc_object.description +'
    '; }) if (ntfc_read_pending
    ' + ntfc_object.full_name +'' + ntfc_object.time + '
    ' + ntfc_object.description +'
    '; }) $('.notification-block .dropdown-menu').html(ntfc_preview); $('.notification-block .dropdown-menu').append('
  • See more
  • '); if (ntfc_pending > 0) { $('.notification-count').text(ntfc_pending).show(); } else { $('.notification-count').hide(); } } else { $('.notification-block .dropdown-menu').html(ntfc_preview); $('.notification-block .dropdown-menu').append('
  • See more
  • '); if (ntfc_pending > 0) { $('.notification-count').text(ntfc_pending).show(); } else { $('.notification-count').hide(); } } if (ntfc_read_pending == 0) { $('.notification-block .dropdown-menu').html('
  • You don\'t have any notifications
  • See more
  • '); $('.notification-count').hide(); } data = {'nid' : '', 'ntid' : 1}; $.post('/api/v1/notification_action', data, function(r) { if (r.request == 'OK') { $('.notification-count').hide(); } }); }, "json"); }); $('.search-save-box').on({ click : function(e) { e.preventDefault(); var search_attr = $(this).attr('rel').split(','); var p = search_attr[1]; var tf = search_attr[0]; window.location = '/search?tf='+tf+'&jc='+jc+'&keywords='+$(this).html()+'&s='+$('#sort_order').val()+'&p='+p; } }, '.search-name'); $( "#keywords_main, #keywords_mobile" ).focus(function(e) { show_saved_searches(e, $(this)); }); $(window).resize(function () { if ($('.search-save-box').is(':visible')) { if ($('#keywords_main').is(':visible')) var left_search_save = $('#keywords_main').offset().left; if ($('#keywords_mobile').is(':visible')) var left_search_save = $('#keywords_mobile').offset().left; $('.search-save-box').css('left',left_search_save); } }); $('.search-save-box').on({ click : function(e) { e.preventDefault(); delete_saved_search($(this)); } }, '.search-name-close'); $('.search-save-box, #keywords_main, #keywords_mobile').click(function(e) { e.stopPropagation(); }); $(document).click(function(e) { $('.search-save-box').hide(); }); $( "#keywords_main, #keywords_mobile" ).autocomplete({ source: function( request, response ) { // data contains the JSON object textStatus contains the status: success, error, etc $.post('/api/v1/searches', {'key' : request.term}, function(data, textStatus) { response(data); }, "json") }, select: function (event, ui) { var reportname = ui.item.value; var thelinks = '/search?tf='+$('#time_frame').val()+'&jc='+jc+'&keywords='+reportname+'&s='+$('#sort_order').val()+'&p='+$('#people_cluster').val(); } }); $('.search-go').click(function(e) { e.preventDefault(); window.location = get_search_url(); }); $('.logout').click(function(e) { e.preventDefault(); }); $('.header_keywords, .home_page_keywords').on('keydown', function(e) { if (e.keyCode == 13) { window.location = get_search_url(); } $('.search-save-box').hide(); }); $('.seemore').click(function(e){ e.stopImmediatePropagation(); }); });
    Jul 13, 2005
    Systematic Biology
    Bayesian phylogenetic analyses are now very popular in systematics and molecular evolution because they allow the use of much more realistic models than currently possible with maximum likelihood methods. There are, however, a growing number of examples in which large Bayesian posterior clade probabilities are associated with very short branch lengths and low values for non-Bayesian measures of support such as nonparametric bootstrapping. For the four-taxon case when the true tree is the star phylogeny, Bayesian analyses become increasingly unpredictable in their preference for one of the three possible resolved tree topologies as data set size increases. This leads to the prediction that hard (or near-hard) polytomies in nature will cause unpredictable behavior in Bayesian analyses, with arbitrary resolutions of the polytomy receiving very high posterior probabilities in some cases. We present a simple solution to this problem involving a reversible-jump Markov chain Monte Carlo (MCMC) algorithm that allows exploration of all of tree space, including unresolved tree topologies with one or more polytomies. The reversible-jump MCMC approach allows prior distributions to place some weight on less-resolved tree topologies, which eliminates misleadingly high posteriors associated with arbitrary resolutions of hard polytomies. Fortunately, assigning some prior probability to polytomous tree topologies does not appear to come with a significant cost in terms of the ability to assess the level of support for edges that do exist in the true tree. Methods are discussed for applying arbitrary prior distributions to tree topologies of varying resolution, and an empirical example showing evidence of polytomies is analyzed and discussed.
      
    Add Public PDF
      
      
    Upload my PDF
      

    Downloading PDF to your library...

    ADD A TAG      64 chars max

      Make private

    APPLIED TAGS

    Uploading PDF...

    PDF uploading

    Delete tag:

    The link you entered does not seem to be valid

    Please make sure the link points to nature.com contains a valid shared_access_token