Article added to library!
Pubchase is a service of - free, open access, crowdsourced protocols repository. Explore protocols.
Sign in
Reset password
or connect with
By signing in you are agreeing to our
Terms Of Service and Privacy Policy
Sep 09, 2015
Scientific Reports
Mesenchymal stem cells (MSCs) have been shown to elicit cardio-protective effects in sepsis. However, the underlying mechanism remains obscure. While recent studies have indicated that miR-223 is highly enriched in MSC-derived exosomes, whether exosomal miR-223 contributes to MSC-mediated cardio-protection in sepsis is unknown. In this study, loss-of-function approach was utilized, and sepsis was induced by cecal ligation and puncture (CLP). We observed that injection of miR-223-KO MSCs at 1 h post-CLP did not confer protection against CLP-triggered cardiac dysfunction, apoptosis and inflammatory response. However, WT-MSCs were able to provide protection which was associated with exosome release. Next, treatment of CLP mice with exosomes released from miR-223-KO MSCs significantly exaggerated sepsis-induced injury. Conversely, WT-MSC-derived-exosomes displayed protective effects. Mechanistically, we identified that miR-223-KO exosomes contained higher levels of Sema3A and Stat3, two known targets of miR-223 (5p &3p), than WT-exosomes. Accordingly, these exosomal proteins were transferred to cardiomyocytes, leading to increased inflammation and cell death. By contrast, WT-exosomes encased higher levels of miR-223, which could be delivered to cardiomyocytes, resulting in down-regulation of Sema3A and Stat3. These data for the first time indicate that exosomal miR-223 plays an essential role for MSC-induced cardio-protection in sepsis.

Downloading PDF to your library...

Uploading PDF...

PDF uploading

Delete tag:

The link you entered does not seem to be valid

Please make sure the link points to contains a valid shared_access_token