Article added to library!
x
Pubchase is a service of protocols.io - free, open access, crowdsourced protocols repository. Explore protocols.
Sign in
Reset password
or connect with
Facebook
By signing in you are agreeing to our
Terms Of Service and Privacy Policy
  • See more
  • '); var ntfc_preview = ''; $.post('/api/v1/get_notifications', function(r) { var ntfc_read_pending = 0; var ntfc_pending = 0; $.each(r.notifications.pending, function(index, ntfc_object) { ntfc_read_pending++; ntfc_pending++; if (ntfc_read_pending
    ' + ntfc_object.full_name +'' + ntfc_object.time + '
    ' + ntfc_object.description +'
    '; }) if (ntfc_read_pending
    ' + ntfc_object.full_name +'' + ntfc_object.time + '
    ' + ntfc_object.description +'
    '; }) $('.notification-block .dropdown-menu').html(ntfc_preview); $('.notification-block .dropdown-menu').append('
  • See more
  • '); if (ntfc_pending > 0) { $('.notification-count').text(ntfc_pending).show(); } else { $('.notification-count').hide(); } } else { $('.notification-block .dropdown-menu').html(ntfc_preview); $('.notification-block .dropdown-menu').append('
  • See more
  • '); if (ntfc_pending > 0) { $('.notification-count').text(ntfc_pending).show(); } else { $('.notification-count').hide(); } } if (ntfc_read_pending == 0) { $('.notification-block .dropdown-menu').html('
  • You don\'t have any notifications
  • See more
  • '); $('.notification-count').hide(); } data = {'nid' : '', 'ntid' : 1}; $.post('/api/v1/notification_action', data, function(r) { if (r.request == 'OK') { $('.notification-count').hide(); } }); }, "json"); }); $('.search-save-box').on({ click : function(e) { e.preventDefault(); var search_attr = $(this).attr('rel').split(','); var p = search_attr[1]; var tf = search_attr[0]; window.location = '/search?tf='+tf+'&jc='+jc+'&keywords='+$(this).html()+'&s='+$('#sort_order').val()+'&p='+p; } }, '.search-name'); $( "#keywords_main, #keywords_mobile" ).focus(function(e) { show_saved_searches(e, $(this)); }); $(window).resize(function () { if ($('.search-save-box').is(':visible')) { if ($('#keywords_main').is(':visible')) var left_search_save = $('#keywords_main').offset().left; if ($('#keywords_mobile').is(':visible')) var left_search_save = $('#keywords_mobile').offset().left; $('.search-save-box').css('left',left_search_save); } }); $('.search-save-box').on({ click : function(e) { e.preventDefault(); delete_saved_search($(this)); } }, '.search-name-close'); $('.search-save-box, #keywords_main, #keywords_mobile').click(function(e) { e.stopPropagation(); }); $(document).click(function(e) { $('.search-save-box').hide(); }); $( "#keywords_main, #keywords_mobile" ).autocomplete({ source: function( request, response ) { // data contains the JSON object textStatus contains the status: success, error, etc $.post('/api/v1/searches', {'key' : request.term}, function(data, textStatus) { response(data); }, "json") }, select: function (event, ui) { var reportname = ui.item.value; var thelinks = '/search?tf='+$('#time_frame').val()+'&jc='+jc+'&keywords='+reportname+'&s='+$('#sort_order').val()+'&p='+$('#people_cluster').val(); } }); $('.search-go').click(function(e) { e.preventDefault(); window.location = get_search_url(); }); $('.logout').click(function(e) { e.preventDefault(); }); $('.header_keywords, .home_page_keywords').on('keydown', function(e) { if (e.keyCode == 13) { window.location = get_search_url(); } $('.search-save-box').hide(); }); $('.seemore').click(function(e){ e.stopImmediatePropagation(); }); });
    Jul 09, 2017
    Neuroradiology
    The purpose of this study was to examine advanced diffusion-weighted magnetic resonance imaging (DW-MRI) models for differentiation of low- and high-grade tumors in the diagnosis of pediatric brain neoplasms. Sixty-two pediatric patients with various types and grades of brain tumors were evaluated in a retrospective study. Tumor type and grade were classified using the World Health Organization classification (WHO I-IV) and confirmed by pathological analysis. Patients underwent DW-MRI before treatment. Diffusion-weighted images with 16 b-values (0-3500 s/mm2) were acquired. Averaged signal intensity decay within solid tumor regions was fitted using two-compartment and anomalous diffusion models. Intracellular and extracellular diffusion coefficients (Dslow and Dfast), fractional volumes (Vslow and Vfast), generalized diffusion coefficient (D), spatial constant (μ), heterogeneity index (β), and a diffusion index (index_diff = μ × Vslow/β) were calculated. Multivariate logistic regression models with stepwise model selection algorithm and receiver operating characteristic (ROC) analyses were performed to evaluate the ability of each diffusion parameter to distinguish tumor grade. Among all parameter combinations, D and index_diff jointly provided the best predictor for tumor grades, where lower D (p = 0.03) and higher index_diff (p = 0.009) were significantly associated with higher tumor grades. In ROC analyses of differentiating low-grade (I-II) and high-grade (III-IV) tumors, index_diff provided the highest specificity of 0.97 and D provided the highest sensitivity of 0.96. Multi-parametric diffusion measurements using two-compartment and anomalous diffusion models were found to be significant discriminants of tumor grading in pediatric brain neoplasms.
      
    Add Public PDF
      
      
    Upload my PDF
      

    Downloading PDF to your library...

    ADD A TAG      64 chars max

      Make private

    APPLIED TAGS

    Uploading PDF...

    PDF uploading

    Delete tag:

    The link you entered does not seem to be valid

    Please make sure the link points to nature.com contains a valid shared_access_token