Article added to library!
Pubchase is a service of - free, open access, crowdsourced protocols repository. Explore protocols.
Sign in
Reset password
or connect with
By signing in you are agreeing to our
Terms Of Service and Privacy Policy
Sep 09, 2015
Changes in the gut microbiome are often associated with disease. One of the major goals in microbiome research is determining which components of this complex system are responsible for the observed differences in health state. Most studies apply a reductionist approach, wherein individual organisms are evaluated independently of the surrounding context of the microbiome. While such methods have yielded valuable insights into the microbiome, they fail to identify patterns that may be obscured by contextual variation. A recent report by Schubert et al. [A. M. Schubert, H. Sinani, and P. D. Schloss, mBio 6(4):e00974-15, 2015, doi: 10.1128/mBio.00974-15] communicates an alternative approach to the study of the microbiome's association with host health. By coupling a multifactored experimental design with regression modeling, the authors are able to profile context-dependent changes in the microbiome and predict health status. This work underscores the value of incorporating model-based procedures into the investigation of the microbiome and illustrates the potential clinical transformations that may arise through their use. Copyright © 2015 Sharpton and Gaulke.

Downloading PDF to your library...

Uploading PDF...

PDF uploading

Delete tag:

The link you entered does not seem to be valid

Please make sure the link points to contains a valid shared_access_token