Article added to library!
x
Pubchase is a service of protocols.io - free, open access, crowdsourced protocols repository. Explore protocols.
Sign in
Reset password
or connect with
Facebook
By signing in you are agreeing to our
Terms Of Service and Privacy Policy
Jul 08, 2017
Biochemical And Biophysical Research Communications
Himastatin is a novel antibiotic with antitumor and antibacterial activity. In the himastatin biosynthesis pathway, HmtN is responsible for the hydroxylation of the piperazic acid (Pip) motif. Herein, we present the crystal structures of HmtN (1.3 Å), which is the first structure for a cytochrome P450 involved in the hydroxylation of cyclohexadepsipeptide during himastatin biosynthesis. Structure analysis indicated that almost all the surface of HmtN has negative electrostatic potential, only small patches of positive electrostatic potential can be found. It is worth noting that almost the entire active site of HmtT is negatively charged, while HmtN active site is composed of positive and negative charge. This may be relevant to their specific substrate recognition and different catalytic function. In addition, three channels were observed in HmtN crystal structure; channel 3 may be essential for substrate ingress and egress from the active site to the surface, while channel 1 and channel 2 may be the solvent and water pathway, respectively. Copyright © 2017 Elsevier Inc. All rights reserved.

Downloading PDF to your library...

Uploading PDF...

PDF uploading

Delete tag:

The link you entered does not seem to be valid

Please make sure the link points to nature.com contains a valid shared_access_token