Article added to library!
Pubchase is a service of - free, open access, crowdsourced protocols repository. Explore protocols.
Sign in
Reset password
or connect with
By signing in you are agreeing to our
Terms Of Service and Privacy Policy
Sep 10, 2015
IEEE Transactions On Pattern Analysis And Machine Intelligence
To uncover an appropriate latent subspace for data representation, in this paper we propose a novel Robust Structured Subspace Learning (RSSL) algorithm by integrating image understanding and feature learning into a joint learning framework. The learned subspace is adopted as an intermediate space to reduce the semantic gap between the low-level visual features and the high-level semantics. To guarantee the subspace to be compact and discriminative, the intrinsic geometric structure of data, and the local and global structural consistencies over labels are exploited simultaneously in the proposed algorithm. Besides, we adopt the l2,1 -norm for the formulations of loss function and regularization respectively to make our algorithm robust to the outliers and noise. An efficient algorithm is designed to solve the proposed optimization problem. It is noted that the proposed framework is a general one which can leverage several well-known algorithms as special cases and elucidate their intrinsic relationships. To validate the effectiveness of the proposed method, extensive experiments are conducted on diversity datasets for different image understanding tasks, i.e., image tagging, clustering, and classification, and the more encouraging results are achieved compared with some state-of-the-art approaches.

Downloading PDF to your library...

Uploading PDF...

PDF uploading

Delete tag:

The link you entered does not seem to be valid

Please make sure the link points to contains a valid shared_access_token